Patrocinado

The Future of Mental Health: Partnering with AI for Personalized Care

0
3KB

With the dawn of the COVID-19 pandemic, mental health has become an area of concern, as more than 1 billion humans every year seek help from clinicians and therapists to cure problems such as depression, anxiety, and suicidal thoughts. This inevitable growing pressure has stretched healthcare and therapeutic institutes to choose smarter technologies such as artificial intelligence (AI) and machine learning (ML) to interact with patients and improve their mental health.

According to new studies found in the Journal of the American Medical Association (JAMA), advanced AI and LLM models can enhance mental health therapies on a larger scale by analyzing millions of text conversations from counseling sessions and predicting patients’ problems with clinical outcomes.

Hence, for a more accurate diagnosis, AI in mental wellness has the potential to lead to a positive transformation in the healthcare sector.

In this section, we will highlight a few points where mental healthcare professionals, AI professionals, and data engineers could collaborate to eliminate ethical issues and develop trustworthy and safe AI and ML models for patients.

AI Trustworthiness

Data engineers should make therapists and clinicians aware that AI clinical decision support tools can sometimes make inaccurate recommendations that may adversely impact clinician treatment selection. Therefore, post-AI-based recommendations, clinicians must give a thorough read of them and improvise the treatment based on their independent decision-making skills.

Model Transparency

Although the ML and AI models have achieved high performance in the healthcare sector, these technologies often find themselves in a tough spot to interpret data in the mental healthcare sector in a given clinical setting, leaving medical professionals in doubt about these technologies’ judgments. The lack of transparency and interpretability can be fixed by rigorous quality checking and safety evaluation of the data before clinical deployment, a closer look at the accuracy and monitoring after deployment, and educating every medical staff member about the AI and ML models.

Data Security

With the increasing use of computation, ML, and AI in the healthcare sector comes the challenge of data leakage and breaching, which can be curbed by implementing strict data protection standards and regulations. After feeding sensitive patient data to AI and ML models, data engineers must ensure that all the information in the cloud system is encrypted to avoid cyberattacks.

The Future Potential of Digital Psychiatry

In the future, to discover new relationships between mental healthcare and AI and ML technologies, a very large and high-quality dataset is the need of the hour to collect and analyze the structured and unstructured data and feed it to the models. The increasing use of deep learning will eventually ease the pressure of handling complex data, ensuring that these models provide accurate information at the correct time. The introduction of transfer learning will help to strengthen ML models and improve their performance. In the coming years, transfer learning will be heavily applied to image analysis to find an accurate clinical outcome.

To Know More, Read Full Article @ https://ai-techpark.com/mental-healthcare-with-artificial-intelligence/ 

Read Related Articles:

Democratized Generative AI

Generative AI Applications and Services

Patrocinado
Patrocinado
Pesquisar
Patrocinado
Categorias
Leia mais
Outro
Chlor-Alkali Market, Demand To Witness Huge Growth by Fact MR
The chlor-alkali industry, a cornerstone of the global chemical sector, primarily produces...
Por akshaygorde 2025-01-07 12:56:36 0 822
Outro
Online Learning Platforms Market Sees Promising Growth, Future Strategic Planning and Forecast to 2033
According to Regional Research Reports, the Global Online Learning Platforms...
Por Harshsingh 2024-06-25 10:29:54 0 2KB
Outro
Smart Appliances Market to Reach $125.53 Million by 2029, Growing at 18% CAGR
  The global smart appliances market is expected to grow at 18% CAGR from 2024 to 2030. It...
Por Monika312 2024-08-03 05:46:16 0 2KB
Outro
Circuit Monitoring Market 2023 Global Business Insights Report
The study examines historical data and forecasts in order to determine the total market size...
Por Nick_Tech 2023-12-02 05:21:30 0 4KB
Networking
Voltage Calibrator Market Growth, SWOT Analysis and Growth Prospects Till 2030
Voltage Calibrator Market Segmentation The MRFR report highlights an inclusive segmental...
Por globalresearch 2023-02-16 06:11:24 0 5KB
Patrocinado
TikTikTalk https://tiktiktalk.com